
Lessons Learned in Developing a Low-cost High Performance Medical
Imaging Cluster

Kirt Lillywhitea Dah-Jye Leea Sameer Antanib Dong Zhangc

Rodney Longb

a Department of Electrical and Computer Eng., Brigham Young University, Provo, UT
kirt.lillywhite@gmail.com, djlee@ee.byu.edu

b National Library of Medicine, National Institutes of Health, Bethesda, Maryland
antani@nlm.nih.gov, long@nlm.nih.gov

c The School of Information Science and Technology, Sun Yat-sen University,
Gaunzho, Guangdong, 510275, China

zhangd@mail.sysu.edu.cn

Abstract

This paper explores the usefulness of the Sony
PlayStation 3 R©(PS3) for medical image processing.
Medical image processing often entails dealing with
a large number of high resolution images, requiring
a large amount of computational power to process.
The PS3 is powered by the Cell Broadband Engine, a
microprocessor created by IBM, capable of rapid nu-
meric computation with low power requirements that
has helped the unit to become a popular gaming unit.
The unit can be repurposed as a low-cost high perfor-
mance computing platform. In order to demonstrate
the computational abilities of the PS3, several basic
image processing tasks are implemented and compared
with desktop PCs, equipped with general-purpose micro-
processors. This article describes lessons learned in the
process of building some fundamental image processing
tasks. The article also describes the architecture of the
Cell Broadband Engine and provides information about
developing applications given the architecture. The ar-
ticle also provides an introduction to setting up a high-
performance image processing environment with a clus-
ter of such relatively inexpensive PS3 units.

1 Introduction

Medical image processing tasks are often highly
computationally intensive. Applications routinely pro-
cess a large number of high resolution images. Both
challenges can result in lengthy run-times and require

appropriate capabilities. To address the challenges
posed by such intensive computation this article ex-
plores the possibility of building a cluster of Sony
PlayStation 3 R©(PS3) gaming consoles. The PS3 was
developed for gaming but has several features that
make it attractive for scientific computing: (i) the PS3
is designed to easily install other operating systems,
such as, several Linux distributions, that support Pow-
erPC processors; (ii) is relatively inexpensive; (iii) and
it uses the Cell Broadband Engine (Cell BE) as its
main processor. The PS3 is relatively inexpensive be-
cause gaming consoles are a very highly competitive
market, with manufacturers often selling their units at
a loss in order to make money later through games,
accessories, etc.

The Cell BE, is a heterogeneous multi-core proces-
sor jointly developed by Sony, IBM, and Toshiba. The
project grew out of a challenge from Sony and Toshiba
to create a power efficient and cost effective high perfor-
mance processor [1]. The Cell BE is designed to be used
in a variety of applications, and especially those that
require intense single precision computational abilities.
The Cell BE is also used in the Roadrunner super-
computer at Los Alamos National Labs in New Mexico
which in November 2008 was ranked number one on
the Top500 list [2], which ranks supercomputers world-
wide. As evidence of efforts to make the Cell BE power
efficient, the top seven supercomputers on the 4th edi-
tion of the Green500 list [3] released in November of
2008 use the Cell BE. The Green500 list ranks super-
computers by performance per Watt. The Roadrunner
supercomputer in Los Alamos National Labs is ranked

1



seventh on the Green500 list.
To further increase the performance of a single PS3,

a cluster of PS3 units can be assembled. Cluster-
ing computers is an old concept and has been used
frequently as a means to distribute computation [4].
Building clusters of PS3s [5, 6, 7] has become popu-
lar in recent years and such clusters are also available
commercially.

There is a need for a freely distributed image pro-
cessing library and better documentation of cluster set-
up procedures so that PS3 units can be more widely
used in scientific applications. The rest of the paper
is organized as follows: Section 2 discusses the archi-
tecture and programming model for the Cell BE. Sec-
tion 3 discusses the programming environment for the
PS3. In Section 4, two basic image processing tasks
are implemented on the Cell BE and compared with
other microprocessors. The cluster setup is discussed
in Section 5. Finally, Section 6 lists our conclusions
and direction for future work.

2 Cell Processor

The Cell BE is a heterogeneous processor compris-
ing of a Power Processing Element (PPE) and eight
SIMD1, co-processors, called Synergistic Processor El-
ements (SPEs). The eight SPEs deliver most of the
computational abilities of the Cell BE. The SPEs have
been tuned for numerical computation and rely on a
simple design with short pipelines and a SIMD instruc-
tion set. Single precision operations are fully pipelined
within the SPEs, making each SPE capable of a peak
performance of 25.6 Gflop/s. All together the SPEs
are capable of 204.8 Gflops/s. Hardware controlled
caches, dynamic branch prediction, out-of-order execu-
tion, and other space consuming hardware have been
removed to make the SPEs simpler and faster. The
SPEs have two execution pipelines whose selection for
use is determined by the instruction type.

The processing cores are joined by a high-bandwidth
interconnect bus, called the Element Interconnect BUS
(EIB). The PPE is used mainly to handle the demands
of the operating system and to control the eight SPEs.
The PPE is a PowerPC core, similar to those that
might be found in more traditional microprocessors.
The PPE does not support out-of-order execution, but
does have simultaneous multi-threading support, al-
lowing two threads of execution at the same time. The
PPE has 32 KB of L1 cache and 512 KB of L2 cache.

For data transfers each SPE has a memory flow con-
troller (MFC) to manage DMA operations, allowing

1Following Flynn’s taxonomy SIMD stands for Single Instruc-
tion, Multiple Data streams.

data transfers to overlap with computations. Each SPE
has 256 KB of memory called the local store (LS). The
SPEs only have access to their own LS and all data in
RAM must first be transferred to it before use. The
LS is not a traditional hardware cache and does not
have mechanisms to predict memory accesses. It acts
as a software cache that must be explicitly controlled
by the user. This design allows greater and more pre-
dictable performance than traditional caches because
application-level knowledge can be used to effectively
pre-fetch all data that are to be used. This can be an
effective method for minimizing memory latency [8].
Separate MFC in each SPE permits techniques such
as double buffering or multi-buffering, to reduce or of-
ten times completely eliminate delays due to memory
transfers. Figure 2 shows how double buffering can
completely eliminate every memory transfer except the
very first transfer if the computations involved take as
long or longer than the DMA transfers. Figure 1 shows,
at a high level, the architecture of the Cell BE.

M
F
C

LS

SPU
SPE1

M
F
C

LS

SPU
SPE0

M
F
C

LS

SPU
SPE7

M
F
C

LS

SPU
SPE6

M
F
C

LS

SPU
SPE5

M
F
C

LS

SPU
SPE4

M
F
C

LS

SPU
SPE3

M
F
C

LS

SPU
SPE2

E
IB

PPE

L2

L1

PPU

RAM

M
IC

Figure 1. Diagram of the Cell BE [9]. On the
PS3, one SPE, shown outlined with dashed
lines, is reserved for the operating system
and the other SPE outlined is disabled to in-
crease manufacturing yields. This leaves six
SPEs available to the system.

While using a software cache can lead to better
memory performance, it does make the programming
paradigm more difficult for the programmer. The 256
KB LS is used to store instructions as well as data and
must be used carefully in order to not exceed its capac-



ity. Additionally, DMA operations must follow a set of
rules in order to not generate run-time errors.

• DMA operations must be 1, 2, 4, 8, 16, or any
multiple of 16 bytes in size.

• For 1, 2, 4, or 8 byte transfers, the source and des-
tination addresses must have the same four least
significant bits.

• Data transfers must be less than 16 kilobytes in
size.

In addition to rules to ensure DMA completion, there
are other factors that can affect DMA transfer speed. If
the source and destination do not have the right align-
ment it will require two DMA operations rather than
one.

Transfer 1 Transfer 2 Transfer 3

Process 1 Process 2 Process 3

Figure 2. Processing cannot begin until the
first data transfer has completed. As the first
data transfer is being processed, the second
data transfer can occur. If the processing
takes long enough it can completely hide the
second and subsequent data transfers.

Each core on the Cell BE also has mailboxes for
sending 32 bit messages to each other. The mailboxes
are simply small buffers for holding messages. These
mailboxes are mostly intended for sending status mes-
sages but can also be used to send other short data
transfers and typically have a lower latency than DMA
operations.

One of the most significant challenges when work-
ing with the Cell BE is programming for multiple cores.
While multiple core processors are quite common now,
software developers are still slow to adopt new pro-
gramming paradigms to take advantage of multiple
cores. These machines, however, still benefit when mul-
tiple applications are run concurrently as each core can
handle an application. The Cell BE though has het-
erogeneous cores and if individual applications do not
utilize multiple cores then all applications will run on
the one PPE core, making programming for multiple
cores essential.

To use the multiple cores on the Cell BE for medi-
cal image processing, several parallel programming ap-
proaches can be used.

Pipeline The cores could be considered as a hardware
pipeline in which each core has a specific task to

complete and passes its output to the next core
which is the next stage in the pipeline. Advantages
to this approach are that SPE to SPE transfers are
very fast and more than one task can be done at
once, possibly reducing the amount of overhead
due to moving code in and out of cores. The dis-
advantage to such an approach can be when the
run-time of tasks are not balanced resulting in un-
derutilization and inefficiency.

Data Partitioning Another very common way to use
the cores in parallel is to break up the data into
parts and to process them in parallel. Each core
runs the same code but with different data. This
has clear block separation where each SPE is given
a piece of the image to operate on. One disadvan-
tage, however, is if there are other tasks that need
to be accomplished, the SPEs have to be stopped,
new code loaded, and the SPEs started again.

Task Parallelism In a task parallel approach, each
core runs a different task that is independent from
the other tasks. If the tasks share data, consider-
able resources can be consumed to handle depen-
dencies resulting in inefficiencies.

The Cell BE in the PS3 has some restrictions. Only
6 SPEs are available for use. One of the SPEs is re-
served by the operating system and another has been
disabled to allow higher manufacturing yields.

3 Programming Environment Setup

In order to use the PS3 for medical image process-
ing several changes need to be made to the factory
setting on the units. We chose Yellow Dog Linux 6.0,
maintained by Fixstars2. Yellow Dog Linux is based
off of Red Hat Linux and uses the familiar RPM pack-
age manager. This distribution of Linux is designed
specifically for the PS3, and is relatively easy to in-
stall and use. It also contains the freely distributable
parts of the IBM Cell SDK 3.0. After Yellow Dog was
installed, then the remaining components of the Cell
SDK were installed. The SDK provides useful libraries
and the ability to use the SPEs.

Fixstars has a install guide on their website that can
be followed to install Yellow Dog Linux on the PS3. In
order to do the installation and use the Linux environ-
ment it is strongly recommended that a high definition
LCD monitor or TV is used so that text can be read. A
computer monitor can be used with the use of an HDMI
to DVI adapter as long as the monitor has support for
high-bandwidth digital content protection (HDCP).

2http://us.fixstars.com/products/ydl/



For compiling, the GNU compiler GCC was used.
There are two separate GCC compilers that are needed,
one for the PPE and one for the SPEs. The SPE code is
compiled into a static library and linked into the PPU
code at link time during the compilation.

In order to get accurate timing information, special
hardware timing resources on the Cell BE are used.
There are a total of 11 counting registers on the Cell
BE that can be used for timing purposes; three on
the PPE and one on each of the SPEs. The coun-
ters are incremented or decremented at the timebase
frequency, which can be found in the /proc/cpuinfo
file in a Linux environment. Each SPE has a decre-
menting 32 bit counter. The counter is written to its
maximum value at the start of a timing block and then
read at the end of the block. At the timebase frequency
of the Cell BE found in the PS3 this counter will un-
derflow at 53.82 seconds and have a resolution of 12.53
nanoseconds. On the PPE the timebase register is used
directly. It is a 64 bit incrementing counter allowing to
time longer running blocks; up to 231 billion seconds
long. The IBM SDK provides intrinsics for working
with the timebase register.

4 Example Medical Imaging Building
Blocks

In order to show the abilities of the Cell BE, sim-
ple image processing functions that make up the med-
ical imaging algorithm in our application, were pro-
grammed on the Cell BE. The first function converts
an image from the RGB color space to the HSV color
space[10]. It is simple but is an image processing func-
tion that used in many algorithms. The second func-
tion is a Gabor filter[11] and is a little more complex
but also shows up frequently in image processing.

Since the PS3s will be placed in a cluster a data par-
titioning approach to parallelism has been taken. Each
core on the Cell BE handles a single image, processing
6 images at a time.

4.1 RGB to HSV Conversion

On a normal PC, OpenCV3 was used to do the RGB
to HSV conversion. OpenCV is an open source image
processing library first developed by Intel Corporation
and optimized for Intel Pentium R©processors. As of
2008 OpenCV is supported by Willow Garage, Inc. It
is released under a very liberal BSD style license, which
places no restrictions on the redistribution of the source
code or binaries as long as it maintains the copyright.

3http://sourceforge.net/projects/opencvlibrary/

Due to the liberal license and optimizations made in
OpenCV, it is a perfect starting place to build basic
building blocks for a medical image processing library
for the PS3.

The OpenCV code for RGB to HSV color conver-
sion was ported to the Cell BE. The only modification
needed to be made was in the manner in which the data
was loaded. The code had to be wrapped with DMA
operations to move the image data from the main mem-
ory to the LS of the SPEs and the results back to the
PPE. So there was a very minimal amount of work that
went into porting the code to the Cell BE.

Although porting the code was simple, there were
some problems with getting desired performance. A
good amount of time was spent trying to speedup DMA
operations that were under-performing similarly imple-
mented DMA benchmark programs. The way that the
results were allocated in main memory proved to be
very important. At first the results were allocated us-
ing a call to the function malloc align, which works
like malloc except the memory alignment is specified.
The second time the results were allocated in the same
way but then assigned values, by loading a blank im-
age into the allocated memory. The second method
led to considerable performance increase allowing six
1500×1024 images to go through color conversion in
42 milliseconds rather than 274 milliseconds. Table 1
shows how long the RGB to HSV color conversion took
in comparison to other processors.

Processor Time for RGB2HSV
PowerPC on PS3 445 ms
Pentium 4 (3.4 GHz) 160 ms
Phenom 2 quad-core (2.8 GHz) 71 ms
Cell BE 42 ms

Table 1. Comparison of four processors to do
RGB to HSV conversion for six images that
are 1500×1024 in size. The code is written to
take advantage of multiple cores if they are
present.

4.2 Gabor Filter

The Gabor filter is a bandpass filter, which has been
shown to approximate the visual cortex in some mam-
mals [12]. Gabor filters have been used for edge detec-
tion, texture segmentation, retina identification, doc-
ument processing, and many other applications. In
many applications a bank of Gabor filters is used with
each filter having a different set of parameters. Gabor



filters works like other linear image transforms in which
the image is convoluted with a kernel. The Gabor filter
kernel was created using Equation 1.

g(x, y;λ, θ, φ, σ, γ) = e−
x′2+γ2y′2

2σ2 cos(2π
x′

λ
+ φ) (1)

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

In order to take advantage of the SIMD nature of the
SPEs, it is best to operate on vectors rather than scalar
data types. The IBM SDK provides intrinsics, which
are C language instructions that essentially inline as-
sembly instructions. The intrinsics allow developers to
operate on vectors. The GCC compiler, however, can
in many cases create SIMD code without the use of
intrinsics through a process called autoSIMDization.
Since there are a large number of image processing
functions that will be implemented in the future, we try
to avoid hand coded optimizations using intrinsics and
rather let the compiler make the optimizations for us.
The first Gabor filter implementation took 1000 mil-
liseconds to do six 1024×1024 images, making the Cell
BE implementation approximately 1.5× faster than the
Pentium 4 implementation. Much of the success of au-
toSIMDization depends on how loops are written. The
innermost loop of the Gabor filter was completely un-
rolled and allowed the compiler to make further opti-
mizations. After loop unrolling, the function took 166
milliseconds to run, giving approximately a 9× speedup
over the Pentium 4 implementation. Table 2 shows how
long it took to do one Gabor filter on several proces-
sors.

Processor Gabor Filter Time
PowerPC on PS3 19,580 ms
Pentium 4 (3.4 GHz) 1,510 ms
Phenom 2 quad-core (2.8 GHz) 322 ms
Cell BE 166 ms

Table 2. Comparison of four processors to
run Gabor filter over six 1024×1024 images.
The code is written to take advantage of mul-
tiple cores if they are present.

5 Cluster of PS3s

The main goal of this project is to enable processing
a large number of high-resolution medical images. The
images require different image processing operations to

be performed on them. To do all this processing can
take several weeks on multiple high-end PC worksta-
tions with methods implemented in MATLAB. We aim
to build a cluster of PS3 machines that can process
these images much faster at a low cost and complexity.

As shown in Figure 3, the cluster has one worksta-
tion that is used to store images and to control the
work done on the cluster. The workstation and PS3s
are connected to a high speed gigabit switch. The
PS3 and workstation all have gigabit network interface
cards (NIC). Following the advise given by Buttari et
al. [7] Jumbo Frame support has not been enabled be-
cause of the configuration difficulties and limitations
of the NIC in the PS3. Jumbo Frames allow a higher
transfer bandwidth by increasing the size of Ethernet
frames that travel across the network.

Each PS3 is headless with no graphical environment
loaded and all unnecessary daemons are not loaded in
order to conserve memory space and increase efficiency.
Work is done on the PS3 using Secure Shell (SSH) from
the workstation. Communication between nodes of the
cluster, including the workstation, are done using MPI.
The Open MPI [13] version 1.3 implementation of MPI
is used, compiled for use in a heterogeneous environ-
ment. Open MPI is an open source implementation of
both the MPI-1 and MPI-2 standards.

Switch

Figure 3. Cluster of PS3s and one work-
station connected by a high speed gigabit
switch.

6 Conclusion

Table 1 and Table 2, which show the wall time for
the two image processing tasks that were implemented,



give a good feel at the performance that is available
to the Cell BE. It is considerably faster than the Intel
Pentium 4 processor and faster than the AMD Phenom
2 920 quad-core. The Phenom 2 became available in
the market in early 2009 while the Cell BE could first
be found in a commercial product in early 2005. So
with these basic image processing tasks the Cell BE
does better than a chip that is four years newer, which
in terms of microprocessors is a very long time.

Implementing the two image processing tasks helped
us learn some important things about programming on
the cell processor.

1. Larger DMA transfers results in greater memory
throughput but increases latency slightly.

2. The method by which memory is allocated in
RAM can affect memory transfer significantly.

3. Double or multi-buffering is a simple but effective
way to hide memory access.

4. In order to take advantage of autoSIMDization the
way loops are organized can be very important.

5. The overhead of launching threads to run on the
SPEs is expensive and should be avoided if possi-
ble.

The PS3 does have a few shortcomings that will limit
what applications can be implemented. The biggest
shortcomings are the lack of main memory, with only
256 MB, and the limited size of the LS. Some appli-
cation performance will suffer severely because of the
lack of space.

Thus far we do not have any performance numbers
for the cluster of PS3s, but the information gathered
so far indicates that a cluster of PS3 could provide
very good performance for medical image processing.
Most of the applications that would run on the PS3 are
embarrassingly parallel and so the performance of the
cluster should scale linearly with the number of nodes
in the cluster. Given the price of a PS3, building a
cluster of them is a very cheap method to get high
performance results.

Acknowledgement

This work research was supported in part by the
National Library of Medicine (NLM) under Grant con-
tract HHSN 276200800412 and intramural research
funds of the Lister Hill National Center for Biomedi-
cal Communications, the National Library of Medicine
(NLM), and the National Institutes of Health (NIH).

References

[1] IBM. The Cell Project at
IBM Research, September 2008.
http://www.research.ibm.com/cell/home.html.

[2] Top500 Supercomputing Sites, November 2008.
http://www.top500.org/lists/2008/11.

[3] The Green500 List, November 2008.
http://green500.org/lists/2008/11/list.php.

[4] Joseph D. Dumas II. Computer architecture:
fundamentals and principles of computer design,
chapter six, pages 249–281. CRC Press, 2006.

[5] C. Reynolds. Big fast crowds on PS3. In Proceed-
ings of the 2006 ACM SIGGRAPH symposium on
Videogames, pages 113–121. ACM New York, NY,
USA, 2006.

[6] J. Kurzak, A. Buttari, P. Luszczek, and J. Don-
garra. The PlayStation 3 for High-Performance
Scientific Computing. Computing in Science &
Engineering, 10(3):84–87, 2008.

[7] A. Buttari, P. Luszczek, J. Kurzak, J. Dongarra,
and G. Bosilca. A rough guide to scientific com-
puting on the PlayStation 3. Innovative Com-
puting Laboratory, Computer Science Department,
University of Tennessee, 2007.

[8] S. Williams, J. Shalf, L. Oliker, S. Kamil, P. Hus-
bands, and K. Yelick. The potential of the cell pro-
cessor for scientific computing. In Proceedings of
the 3rd conference on Computing frontiers, pages
9–20. ACM New York, NY, USA, 2006.

[9] Cell Broadband Engine Programming Handbook
version 1.1.

[10] A.R. Smith. Color gamut transform pairs.
ACM SIGGRAPH Computer Graphics, 12(3):12–
19, 1978.

[11] J.G. Daugman. Uncertainty relation for resolu-
tion in space, spatial frequency, and orientation
optimized by two-dimensional visual cortical fil-
ters. Journal of the Optical Society of America A,
2(7):1160–1169, 1985.

[12] S. Marcelja. Mathematical Description of the
Responses of Simple Cortical Cells. Journal of
the Optical Society of America, 70(11):1297–1300,
1980.

[13] Open MPI: Open Source High Performance Com-
puting. http://www.open-mpi.org/.


